Use of Sub-Slab Sampling to Identify Source of VOCs in Indoor Air in Homes Near the Former Raymark Site

U.S. Environmental Protection Agency
Office of Research and Development
National Risk Management Research Laboratory
Ground Water and Ecosystem Restoration Division
Ada, Oklahoma

February 11, 2004

(Vapor Intrusion Conference Call)

Primary Investigators in Raymark Study

- Dom DiGiulio U.S. EPA, ORD, NRMRL, Ada (principal investigator), OK
- Cindy Paul, U.S. EPA, ORD, NRMRL, Ada, OK
- Ron Mosley, U.S. EPA, ORD, NRMRL, RTP,NC
- Ray Cody, U.S. EPA New England Regional Office, Boston, MA
- Scott Clifford, U.S. EPA New England Regional Lab, North Chelmsford, MA
- Peter Kahn, U.S. EPA New England Regional Lab, North Chelmsford, MA
- Annette Lee, XDD Ltd.
- Kaneen Christensen, formerly of XDD Ltd.

RESEARCH & DEVELOPMENT Building a scientific

Building a scientific foundation for sound environmental decisions

Primary Elements of Study

- Ground-water and soil-gas sampling for VOCs
- Outdoor, indoor, and sub-slab sampling for VOCs (15 homes, 1 business)
- Air exchange rate testing and indoor air and sub-slab sampling for radon

Building a scientific foundation for sound environmental decisions

Primary Objectives:

- Develop a protocol for sub-slab vapor probe installation (complete)
- Assess potential bias associated with subslab sampling (complete)
- Develop an algorithm to utilize indoor air, outdoor air, sub-slab gas, and soil-gas and/or ground-water data to assess sources of indoor air contamination (ongoing)

Building a scientific foundation for sound environmental decisions

Case Study: Homes near the Raymark Superfund Site

Generalized Groundwater Flow Direction

Building a scientific foundation for sound environmental decisions

Geologic Cross-Section

Building a scientific foundation for sound environmental decisions

Cross-Section G-G"

Building a scientific foundation for sound environmental decisions

Trichloroethene (TCE) Concentrations (ug/l)

Building a scientific foundation for sound environmental decisions

Typical House at Stratford, Ct

Building a scientific foundation for sound environmental decisions

Pre-Sampling Survey

Building a scientific foundation for sound environmental decisions

Collecting an Outdoor Sample

Building a scientific foundation for sound environmental decisions

Indoor Air Sampling: Collection of a Duplicate Sample

Building a scientific foundation for sound environmental decisions

Anatomy of a 6-L Summa Canister Used for Indoor/Outdoor Time Integrated Sampling

Building a scientific foundation for sound environmental decisions

Volume of air (STP) as a function of canister vacuum

Building a scientific foundation for sound environmental decisions

Locating Utilities: Gas Line Entering Through a Wall

Building a
scientific
foundation
for sound
environmental
decisions

Locating Utilities: Sewer Line Exiting Under the Slab

Building a scientific foundation for sound environmental decisions

General
Schematic for
Installation of
Sub-Slab Vapor
Probes

Building a scientific foundation for sound environmental decisions

Drilling a Small Diameter Hole Through A Slab

Building a scientific foundation for sound environmental decisions

"Inner" and "Outer" Holes

Building a scientific foundation for sound environmental decisions

Probe Used at the Raymark Site

Building a scientific foundation for sound environmental decisions

Purge Before Sampling

Building a scientific foundation for sound environmental decisions

Sample Collection into Tedlar Bags

Building a scientific foundation for sound environmental decisions

On-Site GC Analysis of VOCs Using Tedlar Bags

Building a scientific foundation for sound environmental decisions

Sampling Sub-Slab Gas with a 6-L Summa Canister

Building a scientific foundation for sound environmental decisions

Probe Used at the Ada UST Site (chromatography-grade stainless steel)

Building a scientific foundation for sound environmental decisions

Swagelok Fitting to Probe

Building a scientific foundation for sound environmental decisions

Sampling for O₂, CO₂ and CH₄ during Purging

Building a scientific foundation for sound environmental decisions

Collection of Duplicates

Building a scientific foundation for sound environmental decisions

Sampling Sub-Slab Gas with a 1-L Summa Canister at the Ada UST Site

Building a scientific foundation for sound environmental decisions

Sources and Significance of Systematic Error in Sub-Slab Sampling

Building a scientific foundation for sound environmental decisions

Sources and Significance of Systematic Error: 1. Probe construction materials as a source of VOCs

- Analysis of cement and methanol extract
- Use of equipment blanks
- Use of chromatography-grade stainless steel components

Building a scientific foundation for sound environmental decisions

Methanol Extraction of Brass Fittings and Cement Grout for Background VOCs

Building a scientific foundation for sound environmental decisions

Use of a Field Probe Blank at the Raymark Site to Ensure that Probe not a Source of VOCs

COMPOUND	AMBIENT AIR		SAMPLING PROBE	
			FIELD BLANK	
	Canister #6582		Canister #6581	
	(ppb/v)	(ug/m 3)	(ppb/v)	(ug/m3)
1,1,1-Trichloroethane	0.58	3.2	ND(0.21) ND(1.2)
Acetone	4.5 J	11 J	3.1 J	7.3 J
Benzene	0.15 L	0.47 L	0.15 L	0.47 L
Carbon Tetrachloride	0.09 L	0.42 L	0.09 L	0.44 L
Chloroform	0.10 L	0.50 L	ND(0.20)	ND(0.98)
Dichlorodifluoromethane	0.66	3.3	0.59	2.9
Ethylbenzene	0.20 L	0.87 L	ND(0.21)	ND(0.91)
Hexane	1.0	3.7	0.18 L	0.64 L
Methyl-t-Butyl Ketone	0.23	0.81	0.47	1.7
Methylene Chloride	0.44	1.5	0.12 L	0.43 L
Toluene	0.85	3.2	0.42	1.6
Trichlorofluoromethane	0.27	1.5	0.27	1.5
Trichlorotrifluoroethane	0.10 L	0.78 L	0.10 L	0.78 L
m/p-Xylenes	0.65	2.8	ND(0.41) ND(1.8)
o-Xylene	0.25	1.1	0.08 L	0.34 L
NOTES: ND = Not detected above				
L = estimated value, b				
J = Estimated value				
Compounds in bold are				

Building a scientific foundation for sound environmental decisions

Sources and Significance of Systematic Error: 2. VOC loss through tedlar bags

- Comparison with TO-15 analysis
- Tedlar bag study at GWERD

Building a scientific foundation for sound environmental decisions

Comparison with TO-15 Analysis

Building a scientific foundation for sound environmental decisions

Sources and Significance of Systematic Error: 3. Insufficient or excessive purge volume

- Mathematical analysis (mass balance, 2-D particle tracking, "air-gap" calculation)
- Direct sampling

Building a scientific foundation for sound environmental decisions

Calculation of Purge Volume Requirement: Method 1 - Mass Balance

$$\frac{dC}{dt} = \frac{Q}{V}(C_{in} - C)$$

$$purge volume = \frac{tQ}{V} = \ln \left| \frac{C_{in} - C_0}{C_{in} - C_{out}} \right|$$

$$C(0) = C_0$$

Building a scientific foundation for sound environmental decisions

Calculation of Purge Volume: Method 2 – Particle Tracking

Simulated pressure differential (Pa), streamlines, and travel time (min) Below a slab during air sampling at 1 LPM

 $\begin{array}{lll} L_{slab} & = 13 \text{ cm} \\ L_{water-table} = 1000 \text{ cm} \\ K_{slab} & = 1.0 \times 10^{-10} \text{ cm}^2 \\ K_{sub-slab} & = 5.0 \times 10^{-08} \text{ cm}^2 \\ K_{soil} & = 5.0 \times 10^{-08} \text{ cm}^2 \\ R_{w} & = 0.7 \text{ cm} \\ \theta_{g} & = 0.2 \end{array}$

Building a scientific foundation for sound environmental decisions

Calculation of Purge Volume: Method 3 – Void Under Slab

V (L)	<u>D (ft)</u>
1	1.5
2	2.1
3	2.5
4	2.9
5	3.3
6	3.6
7	3.9
8	4.2
9	4.4
10	4.6
11	4.9
12	5.1
13	5.3
14	5.5
15	5.7

- Internal volume of sub-slab probe is insignificant (< 5 cm³)
- Assume thickness of air space underneath slab is ½"

Building a scientific foundation for sound environmental decisions

Concentration as a Function of Sample Sequence at House F

Building a scientific foundation for sound environmental decisions

Sources and Significance of Systematic Error: 4. Location of sub-slab samples

Building a scientific foundation for sound environmental decisions

Comparison of Sampling Locations

Building a scientific foundation for sound environmental decisions

Major Data Interpretation Issues Associated with Sub-Slab Sampling (ongoing analysis of data)

- Logic (algorithm) used and data requirements to discern sources of VOCs in indoor air
- TO-15 analysis versus on-site GC analysis for subset of compounds
- Minimum number of probes per sample area to calculate indoor air/sub-slab concentration ratios (spatial variability)
- Temporal variability

Building a scientific foundation for sound environmental decisions

Preliminary Results and Findings (focus of AEHS meeting in March)

- A protocol has been developed which allows rapid and inexpensive installation of sub-slab vapor probes with minimal disturbance to occupants.
- At least 3 sub-slab vapor probes samples should be installed in a typical home to calculate indoor air/subslab concentration ratios and assess associated spatial variability. Commercial buildings with larger area slabs will require more probes.
- Placement of sub-slab probes in the center of a slab does not consistently result in detection of higher vapor concentrations.
- The sub-slab sampling protocol appears to be free of systematic error

Building a scientific foundation for sound environmental decisions

Preliminary Findings

- An algorithm or flowchart has been developed to discern the source(s) of VOCs in indoor. The following data (and associated data is necessary)
 - indoor air samples (TO-15 or equivalent)
 - Outdoor air samples (TO-15 or equivalent)
 in the "vicinity" of indoor air sampling locations
 - Sub-slab air samples (TO-15 or equivalent)
 - A conservative VOC compound in sub-slab air (e.g., 1,1-DCE) or use of radon to calculate indoor-air/sub-slab concentration ratios.
 - VOC analysis in ground-water and/or soil-gas (TO-15 preferred) in the "vicinity" indoor sampling locations may be necessary at some locations)

Building a scientific foundation for sound environmental decisions

Use of Algorithm Allow Differentiation of Sources of Indoor Air Contamination into the Following Categories

- Outdoor air as the likely primary source
- Indoor air as the likely primary source
- Sub-slab gas as the likely primary source
- Combination of indoor and outdoor air as the likely primary source
- Outdoor, indoor, or a combination of indoor and outdoor air as the likely primary source
- Indoor air or a combination of indoor air and sub-slab gas as the likely primary source
- Outdoor air or a combination of outdoor air and subslab gas as the likely primary source
- Indeterminate

Building a scientific foundation for sound environmental decisions

Questions?

